

Zie ook onze website:

http://groengasproject.eu

Optimierung der Biogasproduktion

Mechanische Vorbehandlung der Substrate zur Steigerung des Biogasertrages

Prof. Dr.-Ing. Christof Wetter

Dr.-Ing. Elmar Brügging

M.Eng. Daniel Baumkötter

Unterstützt durch / Mede mogelijk gemaakt door:

INTERREG - Grenzregionen gestalten Europa Europäischer Fonds für Regionale Entwicklung der Europäischen Union

INTERREG - Grensregio's bouwen aan Europa Europees Fonds voor Regionale Ontwikkeling van de Europese Unie

Das Forscherteam

Gliederung

- 1 Einleitung
- 2 Aufbau Prallreaktor
- 3 Vorversuche
- 4 Umbau Prallreaktor
- 5 Erste Versuchsergebnisse
- 6 Ausblick
- 7 Fazit

1 Einleitung

 Teil des GroenGas-Projektes "Mechanische und enzymatische Vorbehandlung von organischen Reststoffen zur Optimierung der Gasausbeute"

Projektbeschreibung

- Mechanische Vorbehandlung landwirtschaftlicher Reststoffe und Rohstoffe zur Verbesserung des biologischen Abbaus und Steigerung der Gasausbeute mit einem Prallreaktor
- Vergleichende Analysen zur Ermittlung der Betriebskosten und des wirtschaftlichen Nutzens unterschiedlicher Aufschlussverfahren
- Umsetzung der Ergebnisse aus Labor- und halbtechnischen Versuchen in die Praxis
 - → Durchführung von Versuchen auf Biogasanlagen

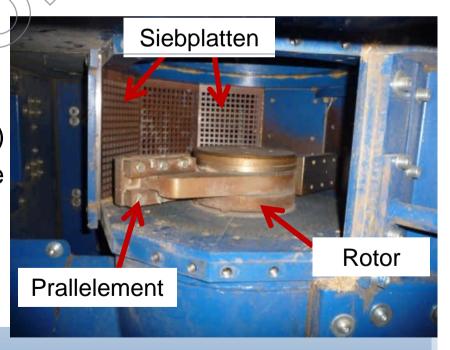
1 Einleitung

Ziele des mechanischen Aufschlusses

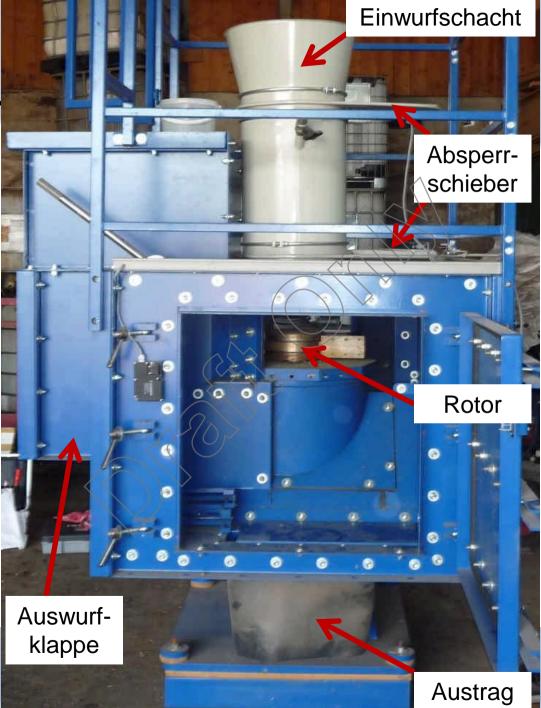
- Optimierung der Substratumsetzung
 - Geringere Einsatzmengen an Substrat für die gleiche erzeugte Energie
 - Weniger Gärreste durch besseren Umsatz in der Fermentation
 - Kleinere Fermenter für die gleiche elektrisch installierte Leistung
 - Kleinere Substratlager/Silolager für die gleiche Biogasanlage
- Verbesserte Nutzung biogener Reststoffe
 - Höhere Ausnutzung bereits eingesetzter biogener Reststoffe und Zwischenfrüchte
 - Einsatz bisher ungenutzter Substrate und Reststoffe

1 Einleitung

- Verbesserung des Biogasprozesses
 - Kleinere Partikelgrößen erleichtern Pump- und Rührprozesse, geringere Kosten für Betrieb und Instandhaltung
 - Größere spezifische Oberflächen beschleunigen die Umsetzungsvorgänge → kürzere Verweilzeiten
 - Faserige Substrate, wie Grassilage, werden effizienter umgesetzt


Ziel der Untersuchungen

- Optimum aus Aufwand und Ertrag ermitteln
 - Maximaler Biogasertrag
 - Minimaler Energie- und Kostenaufwand
- Verbesserung der Wirtschaftlichkeit


2 Aufbau Prallreaktor

- Prinzip: Zerfaserung des Materials durch mehrfache Prallbeanspruchung bei hohen Umdrehungszahlen
- Abmessungen: 1.000 x 800 x 1.500 (LxBxH mm)
- Gewicht: 1,5 t
- Antriebsleistung: 5,5 kWei
- Einstellungsvarianten
 - Siebgrößen (3, 5, 10, 15, 20 mm)
 - Batchbetrieb über Auswurfklappe
 - Drehzahl (0 bis 3.500 U/min)
 - Abstand und Anstellwinkel der Prallelemente zu Siebplatten

2 Au

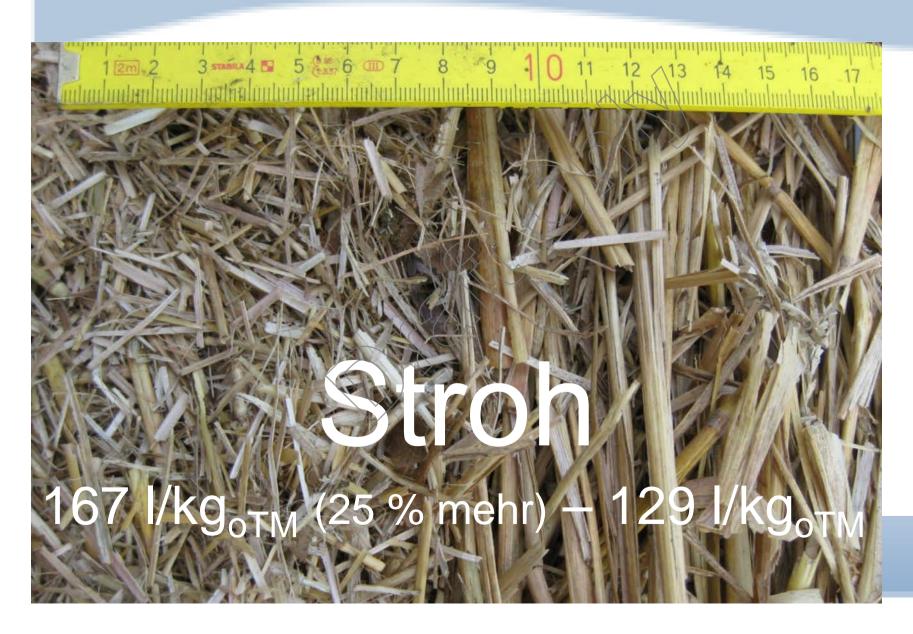
hochschule Münster University of Applied Sciences

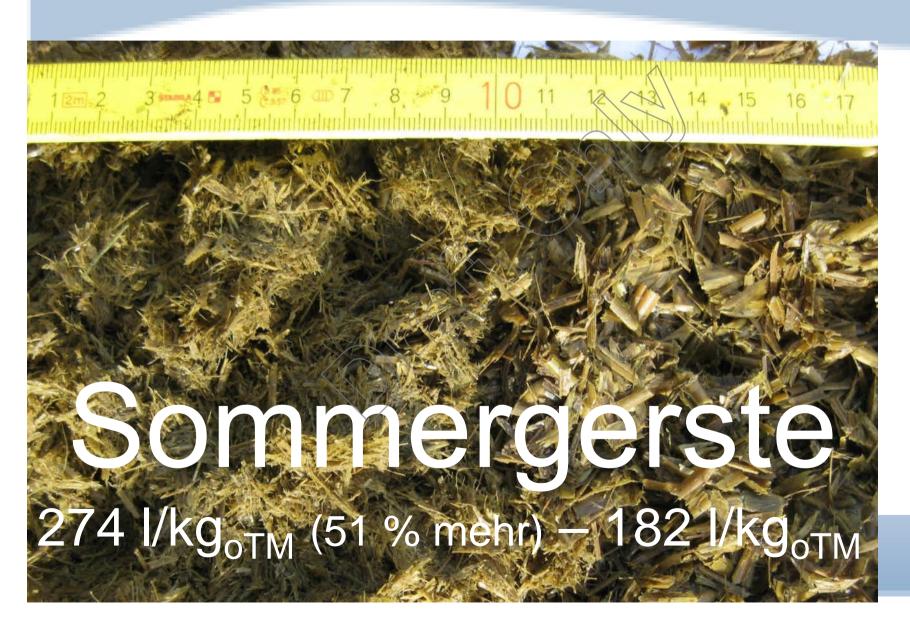
- Einstellungen Prallreaktor
 - Siebgröße: 20 mm
 - Drehzahl: 2.000 U/min
- Untersuchung von
 - Sommergerste
 - Sommertriticale
 - Hafer
 - Sonnenblumen
 - Zuckerrüben
 - Stroh
 - Grassilage

Fachhochschule

Münster University of

Applied Sciences





Überblick

- Alle Substrate bis auf die Grassilage konnten optisch gut zerkleinert bzw. zerfasert werden
- Die Methangaserträge steigen durch den Prall vor Allem bei den feuchteren Substraten (höhere Dichte)

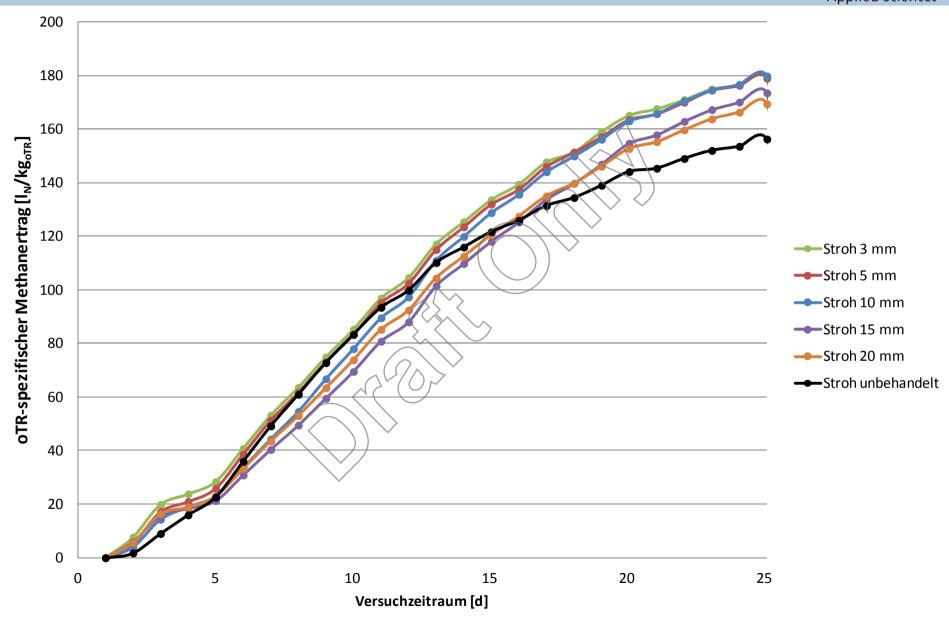
Methangasertrag	Trockenrückstand	Vorher	Nach dem Prallreaktor	Mehrertrag
	[%v.FM]	[I/kg oTM]	[I/kg oTM]	[%]
Grassilage	82,26	227,98	219,12	-4 %
Sommertriticale	20,6	201,11	209,85	4 %
Hafer	21,45	289,02	311,54	8%
Zuckerrübe	12,48	280,33	304,67	9 %
Stroh	88,78	129,12	161,66	25 %
Sonnenblume	16,66	238,11	318,28	34 %
Sommergerste	12,53	182,32	274,75	51%

4 Umbau Prallreaktor

• Umbauten:

- Entfernung Absperrschieber
- Einbau Umluft zur besseren Luftzirkulation bei geschlossenen Auslässen

Förderband für bessere
 Zuführung



5 Erste Versuchsergebnisse 💸

- Versuche mit Stroh bei unterschiedlichen Siebgrößen
- Durchsatz etwa 200 kg/h
- Stromverbrauch ca. 20 kWhet Stron
- Steigerung des Biogasertrages zwischen 9 und 16 % in Abhängigkeit von der Siebgröße

Fachhochschule Münster University of Applied Sciences

6 Ausblick

- Untersuchung verschiedener landwirtschaftlicher Reststoffe und Rohstoffe
- Technische Optimierung des Prallreaktors
- Ermittlung der optimalen Einstellungen am Prallreaktor für einen effizienten mechanischen Aufschluss
- Vergleich mit alternativen mechanischen Behandlungsverfahren
- Untersuchung Kombination mit enzymatischer Vorbehandlung
- Überprüfung der vielversprechendsten Ergebnisse in einer großtechnischen Anlage

7 Fazit

- Der Prallreaktor ist für verschiedene Substrate geeignet und erhöhte den Methangasertrag im Mittel um 18 %
- Es besteht bei den meisten Substraten ein großes Potenzial
- Hafer und Sonnenblumen erreichen die höchsten Biogaserträge (ca. 90 % Silomais-Äquivalent)
- Weitere nicht direkt erfassbare wirtschaftliche Vorteile
 - Erhöhter Abbau der organischen Masse = weniger Gärreste
 - Geringere Belastung der Pumpen und Rührwerke
- Bestehendes Optimierungspotenzial hinsichtlich des optimalen Betriebspunktes für verschiedene Substrate

Zie ook onze website: http://groengasproject.eu

Fachhochschule

Münster University of

Applied Sciences

Unterstützt durch / Mede mogelijk gemaakt door:

provinsje fryslân provincie fryslân

